Synthesis of 2,19-Bridged Androstenediones

Joseph P. Burkhart, Edward W. Huber, F. Mark Laskovics, and Norton P. Peet*

Organic Chemistry, Marion Merrell Dow Research Institute, 2110 East Galbraith Road, Cincinnati, Ohio 45215

Received March 19, 1992

The syntheses of 2,19-(methyleneoxy) and rost-4-ene-3,17-dione (4a), a potent, time-dependent inhibitor of human placental aromatase, and its thio (4b), amino (5), and methylene (14) analogs are described. The key step in the construction of 4a, 4b, and 5 is a Lewis acid-mediated intramolecular alkylation of an A-ring O-trimethylsilyl dienol ether.

We have recently described A-ring bridged androstenediones as inhibitors of human placental aromatase. Hydroxylated 2,19-methylene-bridged androst-4-ene-3,17diones were designed as stable mimics of a presumed intermediate in the aromatase-mediated oxidation of androst-4-ene-3,17-dione, and they are competitive inhibitors of aromatase.^{1a} 2,19-(Methyleneoxy)androst-4-ene-3,17dione (4a) and the isomeric 6,19-bridged compound 8 were designed as potential mechanism-based inhibitors of aromatase. Compound 4a proved to be a potent, time-dependent inhibitor in vitro.^{1b} The novelty of $4a^2$ coupled with its potential utility in treating estrogen-dependent breast cancer led us to prepare additional compounds. This report describes the synthesis of 4a and the thio (4b), amino (5), and methylene (14) analogs.

Scheme I shows syntheses of the 2,19-bridged androstenediones with heteroatoms in the bridge. Thus, the commercially available 19-hydroxy- and known 19mercaptoandrostenediones³ were treated with (2-methoxyethoxy)methyl chloride (MEM chloride) and diisopropylethylamine⁴ to give the MEM ether 2a (76%) and thioether 2b (79%), respectively. The known 19-[(trifluoroacetyl)amino]androstenedione⁵ was converted to 2c using a procedure developed by Nordlander and coworkers⁶ for the alkylation of N-substituted trifluoroacetamides. Introduction of the MEM group was based upon previous reports^{7a,b} which indicated that this group, upon treatment with a Lewis acid, could be expected to generate the desired reactive intermediate necessary for productive ring cyclization. Treatment of MEM derivatives 2a-c with lithium diisopropylamide (LDA) and trimethylsilyl chloride (TMSCl)⁸ gave bis-TMS ethers 3a-c in which the kinetic A-ring enolates were trapped, in nearly quantitative yield. Titanium tetrachloride-mediated^{7c} cyclization of MEM derivatives 3a-c in methylene chloride at -20 °C gave the 2,19-bridged androstenediones 4a-c, respectively. Coproduced with 4b under these conditions was the interesting 4.19-bridged sulfide 6. The ¹H NMR spectrum of 6 clearly showed a vinyl proton whose shift

(3) Bednarski, P. J.; Porubek, D. J.; Nelson, D. J. J. Med. Chem. 1985, 28, 775.

(4) Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 809.
(5) Lovett, J. A.; Darby, M. V.; Counsell, R. E. J. Med. Chem. 1984, 27, 734.

(6) Nordlander, J. E.; Catalano, D. B.; Eberlein, T. H.; Farkas, L. V.; Howe, R. S.; Stevens, R. M.; Tripoulas, N. A.; Stansfield, R. E.; Cox, J. L. Payme, M. L. Vishkolt, A. Tottakadara, J. et al. 1978, 4087

L.; Payne, M. J.; Viehbeck, A. Tetrahedron Lett. 1978, 4987. (7) (a) Walker, D. M.; Logusch, E. W. Tetrahedron Lett. 1989, 1181.

- (b) Nishiyama, H.; Itoh, K. J. Org. Chem. 1982, 47, 2496. (c) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043.
- (8) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 495.

^aReagents and conditions: (a) MEMCl, (i-Pr)₂NEt, CH₂Cl₂ for **2a**, **2b** and KH, 18-c-6, MEMCl, THF for **2c**; (b) LDA, TMSCl, THF; (c) TiCl₄, CH₂Cl₂; (d) K₂CO₃, MeOH, H₂O.

Scheme II^a

 a Reagents and conditions: (a) Et_3N, DMAP, DMF, TMSCl; (b) TiCl_4, CH_2Cl_2.

position, relative to the enone systems of 4a-c, and multiplicity (dd) was consistent with its assigned $\Delta^{5,6}$ position. The IR spectrum of 6 also indicated a nonconjugated C3 ketone (1714 cm⁻¹ vs 1666 cm⁻¹ for 4b). We surmise that some rearrangement to the thermodynamic enolate occurred under the reaction conditions to produce 6. Removal of the trifluoroacetyl group from 4c was accomplished with potassium carbonate in aqueous methanol.⁹

Treatment of MEM ether 2a with triethylamine, 4-(dimethylamino)pyridine (DMAP), and trimethylsilyl chloride afforded the O-trimethylsilyl dienol 7 (Scheme II). Interestingly, when 7 was treated with titanium tet-

^{(1) (}a) Burkhart, J. P.; Peet, N. P.; Wright, C. L.; Johnston, J. O. J. Med. Chem. 1991, 34, 1748. (b) Peet, N. P.; Burkhart, J. P.; Wright, C. L.; Johnston, J. O. J. Med. Chem. 1992, 35, 3303-3306.

⁽²⁾ A few 2,19-bridged steroids with oxygen atoms in the bridge connected directly to the 2-position have been reported: Kocovsky, P.; Pour, M. J. Org. Chem. 1990, 55, 5580 and references cited therein. Kocovsky, P. J. Org. Chem. 1988, 53, 5816. Njar, V. C. O.; Spiteller, G.; Wicha, J.; Caspi, E. Heterocycles 1989, 28, 1051. de Armas, P.; Concepcion, J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Suarez, E. J. Chem. Soc., Perkin Trans. 1 1989, 405.

⁽⁹⁾ Newman, H. J. Org. Chem. 1965, 30, 1287.

Table I. ¹H NMR Chemical Shifts and Coupling Constants for Selected Protons of 2,19-Bridged Androstenediones

compd no.	x	chem shift (ppm)ª				coupling constants (Hz)						
		H _A	H _B	H _c	H _D	$J_{\rm AB}$	$J_{\rm AC}$	JAE	$J_{\rm AF}$	$J_{\rm BF}$	$J_{ m CD}$	$J_{\rm CE}$
4a	0	3.89	3.50	3.78	3.60	11.2	-	1.8	1.8	2.5	10.8	2.6
4b	S	2.48 ^b	2.82	2.35^{b}	3.04	13.1	_c	_c	_c	3.5	13.2	_c
5	NH	2.98	2.73	2.78	2.90	13.5	-	1.9	1.9	3.4	13.0	2.4
4c	NCOCF ₃	4.05	3.28	4.62	2.92	14.0	2.2	_c	_c	3.2	12.8	2.2

^a 300 MHz in CDCl₃. ^bChemical shift position is estimated from COSY experiments; exact value could not be obtained due to overlapping signals. ^c Coupling was observed in COSY experiments but J value could not be determined.

Figure 1. Chemical shift positions and W coupling constants observed from the ¹H NMR (CDCl₃) spectrum of 6,19-(methyleneoxy)androstenedione (8).

rachloride in methylene chloride, 6,19-(methyleneoxy)androstenedione (8) was produced. ¹H NMR, ¹³C NMR, and IR spectral data for the enone system of 8 were directly analogous to those of enones 4a-c and 5. Although we did not attempt to prepare and cyclize the thermodynamic O-trimethylsilyl dienol of thioether 2b, it is noteworthy that 4,19-bridged thioether 6 was isolated from the cyclization of 3b, presumably arising from partial isomerization of the kinetic to the thermodynamic dienolate prior to ring closure, whereas 6,19-bridged ether 8 was the product isolated from the cyclization of 7.

Analysis of the ¹H NMR spectra of bridged compounds 4a-c and 5 clearly showed the 6-membered ring containing the bridge exists in solution as a chair conformation. Coupling constants and field positions for hydrogen atoms in the bridge ring are displayed in Table I. Geminal coupling constants $(J_{AB} \text{ and } J_{CD})$ fell into the 10–15 Hz range as expected. The equatorial-equatorial couplings (J_{AF}) were similar to the axial-equatorial coupling (J_{BF}) as expected¹⁰ and as predicted by inspection of dihedral angles from molecular models of these rigid systems. However, the presence of long range W coupling between H_A and H_E , and H_C and H_E was strikingly diagnostic for the chair conformations. From an inspection of molecular models, it was clear that W arrangements could exist only in the chair, and not the boat, conformations of these molecules. Additionally, long-range W coupling between H_A and H_C was observed for 4b (X = S) and 4c (X = NCOCF₃) but not for 4a (X = 0) or 5 (X = NH).

Salient data from the ¹H NMR spectrum of 6,19-bridged compound 8 are shown in Figure 1. Hydrogen atoms H_A and H_C were clearly discerned at δ 3.37 (dd) and δ 3.76 (ddd), respectively. Remarkably, W couplings were observed for these hydrogen atoms to two different B-ring hydrogen atoms, H_E and H_F , respectively. Again, an in-

^aReagents and conditions: (a) (EtO)₂POCH₂CO₂Et, n-BuLi, THF; (b) Li, NH₃, EtOH, Et₂O; (c) TsCl, pyridine, CHCl₃; (d) TsOH-H₂O, acetone; (e) LHMDS, THF.

spection of molecular models clearly showed that these Warrangements were present in the chair conformation of the 6-membered ring containing the bridge and not in the boat conformation.

Synthesis of the 2,19-ethylene-bridged androstenedione is shown in Scheme III. Treatment of aldehyde 9^{5,11,12} with the anion of triethyl phosphonoacetate,¹³ as shown in Scheme III, gave the α,β -unsaturated ester 10 (89%) which was reduced with lithium in ammonia¹⁴ to afford alcohol 11 (63%). The direct reduction of 10 to 11 was preferable to another method we investigated wherein 10 was treated with magnesium in methanol¹⁵ to provide the corre-

⁽¹⁰⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; John Wiley and Sons: New York, 1981; p 209.

⁽¹¹⁾ We have previously used aldehyde 9 in the preparation of 10-[1hydroxy-2-(trimethylsilyl)ethyl]estr-4-ene-3,17-dione, a weak, competitive aromatase inhibitor. See: Burkhart, J. P.; Weintraub, P. M.; Wright, C. L.; Johnston, J. O. Steroids 1985, 45, 357.

⁽¹²⁾ While the PDC oxidation of the alcohol precursor to 9 gave yields (72-90%) comparable to that reported in ref 5, several alternative methods of oxidation were investigated. The reagents and respective Michael S. M. S.

^{61. 467.}

Mirrington, R. N.; Schmalzl, K. J. J. Org. Chem. 1972, 37, 2871.
 (15) Youn, I. K.; Yon, G. H.; Pak, C. S. Tetrahedron Lett. 1986, 27, 2409

Figure 2. ORTEP drawing for $(4\alpha,10\alpha)$ -4,19-cyclo-A-dihomoandrost-4b-ene-4a,17-dione (14).

sponding saturated ester which was then reduced to 11 with lithium aluminum hydride in ether. Tosylation of alcohol 11 using conditions which minimized the formation of chloroalkane¹⁶ gave tosylate 12 which was deprotected with *p*-toluenesulfonic acid monohydrate in acetone to provide diketone 13 in 73% overall yield from 11. The kinetic enolate of 13 was generated with lithium hexamethyldisilazane (LHMDS), and this enolate underwent intramolecular alkylation¹⁷ to provide (4α , 10α)-4,19-cyclo-A-dihomoandrost-4b-ene-13,17-dione (14) in 62% yield after chromatographic purification. The structure of 14 was confirmed by X-ray analysis. The ORTEP drawing (Figure 2) for 14 clearly shows the 6-membered ring containing the bridge in a chair conformation.

The preparation of bridged compounds 4a, 4b, 5, and 8 using Lewis acid-catalyzed cyclization of A-ring dienol silvl ethers demonstrates the utility and generality of this synthetic methodology. Bridged compounds 4a, 4b, 5, and 14 are time-dependent inhibitors of human placental aromatase. Enzyme kinetic data for these compounds will be the subject of a forthcoming report.

Experimental Section

General Methods and Materials. Melting points were determined in open capillary tubes and are uncorrected. TLC analyses were performed with Merck DC-F₂₅₄ or Analtech GHLF silica gel plates, with visualization by alkaline permanganate and UV irradiation. Flash chromatography was performed with Merck silica gel 60 (0.040–0.063 mm). NMR spectra were recorded at 75 MHz for ¹³C, 282 MHz for ¹⁹F, and at 300 MHz for ¹H in CDCl₃ unless otherwise indicated; ¹⁹F NMR signals are reported in ppm from CFCl₃. MS and HRMS data were recorded at 70 eV using computerized peak matching with perfluorokerosene as the HRMS reference. All reactions were run under an inert atmosphere. The organic extracts were dried over anhydrous MgSO₄ or Na₂SO₄ prior to solvent removal on a rotary evaporator.

TMSCl was distilled from BaO prior to use. TiCl₄ (Aldrich, 1.0 M in CH₂Cl₂) was used from a freshly opened bottle, and anhydrous CH₂Cl₂ (Aldrich) was used without further drying. 19-Hydroxyandrost-4-ene-3,17-dione (1a) was purchased from Diosynth. 19-Mercaptoandrost-4-ene-3,17-dione (1b),⁴ 19-(tri-fluoroacetamido)androst-4-ene-3,17-dione (1c),⁵ and 3,17-bis [1,2-ethanediylbis(oxy)]-androst-5-ene-19-carboxyaldehyde (9)⁵ were prepared as previously described. TsCl was purified by distillation under reduced pressure. All other reagents were obtained from commercial sources and used without further purification.

19-[(2-Methoxyethoxy)methoxy]androst-4-ene-3,17-dione (2a). A solution of 1 (4.54 g, 15.0 mmol), diisopropylethylamine (5.23 mL, 30.0 mmol), and MEMCl (2.57 mL, 22.5 mmol) in CH₂Cl₂ (40 mL) was stirred for 20 h. The reaction mixture was diluted with CH₂Cl₂ (60 mL), and the organics were washed with H₂O (75 mL), 0.5 N HCl (2 × 75 mL), saturated aqueous NaHCO₃ (35 mL), and brine (75 mL). The resulting oil was chromatographed (65% EtOAc/hexane) to provide 2a (4.44 g, 76%) as a pale yellow, viscous oil: ¹H NMR δ 5.89 (d, 1 H, J = 1.3 Hz, vinyl), 4.71 and 4.66 (pr d, 2 H, J = 6.9 Hz, OCH₂O), 3.93 (dd, 1 H, J = 9.6, 0.8 Hz, ¹/₂CH₂O), 3.80 (d, 1 H, J = 9.6 Hz, ¹/₂CH₂O), 3.68-3.52 (m, 4 H, OCH₂CH₂O), 3.39 (s, 3 H, OCH₃), 0.91 (s, 3 H, 18-CH₃); IR (KBr) 1738, 1670 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 391 (MH⁺, 100), 315 (70), 89 (86); HRMS m/z (M⁺) calcd 390.2406, obsd 390.2401.

19-[[(2-Methoxyethoxy)methyl]thio]androst-4-ene-3,17dione (2b). MEM ether 2b was prepared using the same procedure described for the preparation of 2a. Purification by chromatography (75% EtOAc/hexane) gave 2b (1.83 g, 79%) as a colorless, viscous oil: ¹H NMR δ 5.90 (d, 1 H, J = 1.3 Hz, vinyl), 4.72 and 4.68 (pr d, 2 H, J = 11.7 Hz, OCH₂S), 3.74–3.54 (m, 4 H, OCH₂CH₂O), 3.39 (s, 3 H, OCH₃), 3.17 (dd, J = 12.0, 0.7 Hz, ¹/₂CH₂S), 2.96 (d, 1 H, J = 12.0 Hz, ¹/₂CH₂S), 0.93 (s, 3 H, 18-CH₃); MS (DCI/CH₄) m/z (rel intensity) 407 (MH⁺, 38), 331 (100), 89 (24).

Anal. Calcd for $C_{26}H_{34}O_4S$: C, 67.94; H, 8.43. Found: C, 68.08; H, 8.37.

N-(3,17-Dioxoandrost-4-en-19-yl)-2,2,2-trifluoro-N-[(2methoxyethoxy)methyl]acetamide (2c). To a stirred suspension of KH (0.95 g, 8.30 mmol) in THF (40 mL) was added a solution of 1c (3.00 g, 7.55 mmol) in THF (40 mL). After cessation of H_2 gas evolution, 18-crown-6 (2.99 g, 11.3 mmol) was added followed by MEMCl (1.21 mL, 10.6 mmol). After 1 h at rt, the reaction was refluxed for 25 h. Concentration to one-fourth the original reaction volume was followed by dilution with Et₂O $(100 \text{ mL})/\text{CH}_2\text{Cl}_2$ (50 mL). The organic layer was washed with saturated aqueous KCl (4×100 mL), dried, and concentrated. Chromatography (65% EtOAc/hexane) gave 2c (1.09 g, 30%) as an oily, yellow foam: ¹H NMR δ 5.96 (s, 1 H, vinyl), 4.87 and 4.72 $(pr d, 2 H, J = 11 Hz, NCH_2O), 4.32 and 3.91 (pr d, 2 H, J = 14)$ Hz, CH₂N), 3.57 (br s, 4 H, OCH₂CH₂O), 3.39 (s, 3 H, OCH₃), 0.94 (s, 3 H, 18-CH₂); IR (CHCl₃) 1736, 1700, 1670 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 486 (MH⁺, 100), 410 (65), 392 (12), 89 (19); HRMS m/z (MH⁺) calcd 486.2467, obsd 486.2445.

[[19-[(2-Methoxyethoxy)methoxy]androsta-2,4,16-triene-3,17-diyl]bis(oxy)]bis[trimethylsilane] (3a). To a stirred solution of LDA, generated from diisopropylamine (1.21 mL, 8.60 mmol) and n-BuLi (3.33 mL of a 2.42 M solution in hexane, 8.07 mmol) in THF (25 mL) cooled to -20 °C was rapidly added a precooled (-20 °C) solution of TMSCl (2.39 mL, 18.82 mmol) in THF (3 mL). After 3 min, a precooled (-20 °C) solution of 2a (1.05 g, 2.69 mmol) in THF (7 mL) was added dropwise, and the reaction was maintained at -20 °C for 30 min and then allowed to warm slowly to rt. After 30 min at rt, Et₃N (3 mL) was added, the reaction was diluted with Et_2O (150 mL), and the organics were washed with saturated aqueous NaHCO₃ (2×50 mL) followed by 20 mL of brine/saturated aqueous NaHCO₃ (3:1). The organics were dried and concentrated. Hexane was added to the residue and the mixture concentrated to remove any remaining $\mathrm{Et}_3\mathrm{N}$ and give $3a^{18}$ in nearly quantitative yield as a colorless oil: ¹H NMR δ 5.46–5.43 (m, 1 H, vinyl), 4.71–4.63 and 4.66 (m and s, 3 H, vinyl and OCH₂O), 4.50-4.46 (m, 1 H, vinyl), 3.79-3.50 (m, 6 H, OCH₂CH₂O and CH₂O), 3.40 (s, 3 H, OCH₂), 0.88 (s, 3 H, 18-CH₃), 0.19 [s, 9 H, Si(CH₃)₃], 0.16 [s, 9 H, Si(CH₃)₃].

[[19-[[(2-Methoxyethoxy)methyl]thio]androsta-2,4,16triene-3,17-diyl]bis(oxy)]bis[trimethylsilane] (3b). Using the same procedure described for the preparation of 3a, except that the reaction was stirred for 1.5 h at rt and 5 mL of Et_3 N were added prior to workup, 2b (1.78 g, 4.38 mmol) was converted in nearly quantitative yield to 3b¹⁸ (oil): ¹H NMR (90 MHz) δ 5.50-5.37 (m, 1 H, vinyl), 4.78-4.57 and 4.63 (m and s, 3 H, vinyl and OCH₂S), 4.52-4.40 (m, 1 H, vinyl), 3.77-3.43 (m, 4 H, OCH₂CH₂O), 3.36 (s, 3 H, OCH₃), 2.86 (s, 2 H, CH₂S), 0.89 (s, 3 H, 18-CH₃), 0.19 [s, 18 H, 2Si(CH₃)₃].

⁽¹⁶⁾ Kabalka, G. W.; Varma, M.; Varma, R. S. J. Org. Chem. 1986, 51, 2386.

⁽¹⁷⁾ A similar intramolecular alkylation has been reported by: Lan-Hargest, H.-L.; Elliot, J. D.; Eggleston, D. S.; Holt, D. A.; Levy, M. A.; Metcalf, B. W. Tetrahedron Lett. 1987, 28, 6117.

⁽¹⁸⁾ This trimethylsilyl dienol ether was not stable upon attempted purification or storage and was used immediately in the subsequent transformation.

N-[3.17-Bis[(trimethylsilyl)oxy]androsta-2.4.16-trien-19yl]-2,2,2-trifluoro-N-[(2-methoxyethoxy)methyl]acetamide (3c). Using the same procedure described for the preparation of 3a, except that 10 equiv of TMSCl and 10 mL of Et₃N were used, 2c (1.08 g, 2.22 mmol) was converted in nearly quantitative yield to $3c^{18}$ (pale yellow, viscous oil): ¹H NMR δ 5.49-5.45 (m, 1 H, vinyl), 4.94 and 4.86 (pr d, 2 H, J = 11 Hz, OCH₂N), 4.60-4.52 (m, 1 H, vinyl), 4.52-4.46 (m, 1 H, vinyl), 3.84 and 3.78 (pr d, 2 H, J = 15 Hz, CH₂N), 3.55 (s, 4 H, OCH₂CH₂O), 3.38 (s, 3 H, OCH₃), 0.84 (s, 3 H, 18-CH₃), 0.19 [s, 18 H, 2Si(CH₃)₃].

(4α,10α)-4,19-Cyclo-A -dihomo-2-oxaandrost-4b-ene-4a,17dione (4a).¹⁹ To a rapidly stirred solution of TiCl₄ (8.1 mL of a 1.0 M solution in CH₂Cl₂, 8.1 mmol) in additional CH₂Cl₂ (30 mL) at -20 °C was slowly added a precooled (-20 °C) solution of 3a (ca. 2.69 mmol) in CH₂Cl₂ (4 mL). The resultant suspension was stirred at -20 °C for 30 min and then poured into saturated aqueous NaHCO₃ (75 mL). Additional CH₂Cl₂ (200 mL), saturated aqueous NaHCO₃ (150 mL), and H_2O (150 mL) were added. the layers were separated, and the aqueous layer was extracted with additional CH_2Cl_2 (2 × 35 mL). The combined organics were washed with saturated aqueous NaHCO₃ (75 mL), 0.5 N HCl (150 mL), and brine (50 mL). Chromatography (65% EtOAc/hexane) followed by trituration of the resultant solid with 8 mL of Et₂O/hexane (3:1) gave 4a (0.30 g, 35% from 2a) as a white solid: mp 214-217 °C (ethanol); ¹H NMR δ 6.11 (s, 1 H, vinyl), 3.89 (ddd, $1 \text{ H}, J = 11.2, 1.8, 1.8 \text{ Hz}, \frac{1}{4}\text{CH}_2\text{OCH}_2), 3.78 \text{ (dd, 1 H, } J = 10.8,$ 2.6 Hz, $^{1}/_{4}$ CH₂OCH₂), 3.60 (d, 1 H, J = 10.8 Hz, $^{1}/_{4}$ CH₂OCH₂), $3.50 (dd, 1 H, J = 11.2, 2.5 Hz, 1/4 CH_2 OCH_2), 0.91 (s, 3 H, 18-CH_3);$ ¹³C NMR (CDCl₂) δ 219.8, 200.5, 165.5, 129.2, 68.8, 67.5, 51.2, 50.7, 47.3, 44.2, 40.4, 36.6, 35.6, 35.4, 32.1, 31.6, 29.4, 21.6, 20.7, 13.6; IR (KBr) 1734, 1658 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 315 (MH⁺, 100), 297 (10).

Anal. Calcd for C₂₀H₂₆O₃: C, 76.40; H, 8.34. Found: C, 76.14; H, 8.48.

(4α,10α)-4,19-Cyclo-A-dihomo-2-thiaandrost-4b-ene-4a,17dione (4b). Thioether 4b was prepared using the procedure described for the preparation of 4a. Purification by consecutive chromatographies (50% EtOAc/hexane followed by 45% Et-OAc/hexane) followed by crystallization from Et₂O gave 4b (59 mg, 4% from 2b) as a white solid, mp 183–189 °C: ¹H NMR δ 6.23 (d, 1 H, J = 2.1 Hz, vinyl), 3.04 (d, 1 H, J = 13.2 Hz, ${}^{1}/_{4}$ CH₂SCH₂), 2.82 (dd, 1 H, J = 13.1, 3.5 Hz, ${}^{1}/_{4}$ CH₂SCH₂), 2.71–2.65 (m, 1 H), 0.91 (s, 3 H, 18-CH₂); 13 C NMR (CDCl₂) δ 219.9, 199.5, 164.6, 130.3, 53.1, 51.0, 47.3, 42.1, 39.3, 38.1, 35.7, 34.5, 32.1, 31.4, 29.9, 28.9, 28.6, 21.7, 20.2, 13.6; IR (KBr) 1738, 1666 cm⁻¹ MS (EI) m/z (rel intensity) 330 (M⁺, 32), 261 (100), 97 (27), 91 (18), 61 (60), 55 (12), 41 (20); HRMS m/z (MH⁺) calcd 331.1732, obsd 331.1720.

Also isolated was 6 (43 mg, 3%) as a white solid, mp 198-210 °C: ¹H δ 5.65 (dd, 1 H, J = 5.9, 1.5 Hz, vinyl), 3.08 (t, 1 H, J = 3.5 Hz, C-4 methine), 2.97 (d, 1 H, J = 12.3 Hz, $\frac{1}{_4}$ CH₂SCH₂), 2.86 (d, 2 H, J = 3.5 Hz, 1/2CH₂SCH₂), 0.91 (s, 3 H, 18-CH₃); ¹³C NMR & 220.5, 214.2, 140.2, 122.6, 55.6, 51.9, 47.9, 40.5, 38.7, 38.5, 36.0, 34.1, 32.8, 32.6, 31.7, 30.4, 22.0, 20.3, 13.9; IR (KBR) 1738, 1714 cm⁻¹; HRMS m/z (MH⁺) calcd 331.1732, obsd 331.1729.

(4α,10α)-2-(Trifluoroacetyl)-2-aza-4,19-cyclo-A-dihomoandrost-4b-ene-4a,17-dione (4c). Trifluoroacetamide 4c was prepared using the procedure described for the preparation of 4a, except the reaction was stirred at -20 °C for 1.5 h prior to workup. Chromatography (55% EtOAc/hexane) gave 4c (86 mg, 9% from 2c) as a white solid: ¹H NMR δ 6.06–6.01 (m, 1 H, vinyl), 4.62 (ddd, 1 H, J = 12.8, 2.2, 2.2 Hz, $1/_4$ CH₂NCH₂), 4.10–4.00 (m, 1 H, $1/_4$ CH₂NCH₂), 3.28 (dd, 1 H, J = 14.0, 3.2 Hz, $1/_4$ CH₂NCH₂), 2.92 (d, 1 H, J = 12.8 Hz, 1/4CH₂NCH₂), 0.95 (s, 3 H, 18-CH₃); ¹³C NMR δ 219.8, 197.9, 165.5, 156.9 (q, COCF₃), 128.6, 116.2 (q, CF₃), 51.1, 50.6, 47.42, 47.40, 47.3, 44.6, 42.8, 40.6, 37.4, 35.6, 35.0, 32.4, 31.4, 29.3, 21.6, 20.6, 13.7; $^{19}\mathrm{F}$ NMR δ 68.62 (s, CF₃); IR (CHCl₃) 1736, 1692, 1666 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 410 (MH⁺, 100).

Anal. Calcd for C22H28F3NO3: C, 64.54; H, 6.40; N, 3.42. Found: C, 64.42; H, 6.79; N, 3.21.

(4a,10a)-2-Aza-4,19-cyclo-A-dihomoandrost-4b-ene-4a,17dione (5). A solution of 4c (72 mg, 0.18 mmol) in CH₃OH (15 mL) and 10% aqueous K₂CO₃ (2.5 mL) was stirred at rt for 2.5 h, concentrated to one-third the original volume, and poured into 5% aqueous K_2CO_3 (25 mL)/CH₂Cl₂ (35 mL). The aqueous layer was extracted with additional CH₂Cl₂ (2 × 15 mL), and the combined organics were washed with 5% aqueous K_2CO_3 (25 mL) followed by 20 mL of brine/5% aqueous K₂CO₃ (3:1). Chromatography (7% CH₃OH/CHCl₃) gave 5 (38 mg, 69%) as a white solid: mp 168–171 °C; ¹H NMR δ 6.15 (d, 1 H, J = 1.9 Hz, vinyl), 2.98 (ddd, 1 H, J = 13.5, 1.9, 1.9 Hz, $\frac{1}{4}$ CH₂NCH₂), 2.90 (d, 1 H, J = 13.0 Hz, ${}^{1}/{}_{4}$ CH₂NCH₂), 2.78 (dd, 1 H, J = 13.0, 2.4 Hz, ${}^{1}/{}_{4}$ CH₂NCH₂), 2.73 (dd, 1 H, J = 13.5, 3.4 Hz, ${}^{1}/{}_{4}$ CH₂NCH₂), 0.91 (s, 3 H, 18-CH₃); ¹³C NMR & 220.1, 201.7, 166.4, 129.4, 51.3, 51.2, 47.4, 47.3, 45.8, 44.0, 40.5, 37.7, 35.7, 35.0, 32.2, 31.5, 29.5, 21.7, 20.3, 13.6; IR (CHCl₃) 3328, 1738, 1664 cm⁻¹; HRMS m/z (M⁺) calcd 313.2042, obsd 313.2030.

[[19-[(2-Methoxyethoxy)methoxy]-17-oxoandrosta-3,5dien-3-yl]oxy]trimethylsilane (7). To a solution of 2a (0.46 g, 1.18 mmol), Et₃N (0.98 mL, 7.06 mmol), and 4-(dimethylamino)pyridine (72 mg, 0.59 mmol) in DMF (6 mL) was added TMSCl (0.75 mL, 5.89 mmol), and the reaction was heated to reflux. After 6.5 h, the reaction was allowed to cool and stirred at rt overnight. The reaction was diluted with hexane (45 mL) and washed with saturated aqueous NaHCO₃ (40 mL). The aqueous layer was extracted with additional hexane (20 mL), and the combined organics were washed with saturated aqueous NaHCO₃ (30 mL) followed by brine (15 mL). Flash chromatography (45% EtOAc/hexane) gave 7 (0.41 g), which contained some residual hexane, as a pale yellow oil: ¹H NMR (90 MHz) δ 5.29-5.08 (m, 2 H, both vinyl), 4.54 (s, 2 H, OCH₂O), 3.67-3.33 (m, 6 H, 3 CH₂O), 3.27 (s, 3 H, OCH₃), 0.83 (s, 3 H, 18-CH₃), 0.14 [s, 9 H, Si(CH₃)₃].

1,2,6,7,8,9,11,12,13,14,15,16-Dodecahydro-6,10-(methanoxymethano)-10H-cyclopenta[a]phenanthrene-3,17-dione (8). Bridged compound 8 was prepared using the procedure for the preparation of 4a, except 1.1 equiv of TiCl₄ were used and the reaction was stirred at -20 °C for 1 h prior to workup. Trituration of the resultant oily solid with Et₂O, followed by digestion and filtration, gave 8 (123 mg, 46% from 2a) as a white solid, mp 189-201 °C: ¹H NMR § 5.87 (s, 1 H, vinyl), 4.16-4.06 (m, 2 H, $/_{2}$ CH₂OCH₂), 3.76 (ddd, 1 H, J = 11.1, 2.3, 2.3 Hz, $^{1}/_{4}$ CH₂OCH₂), 3.37 (dd, 1 H, J = 11.5, 1.4 Hz, 1/4CH₂OCH₂), 2.92-2.78 (m, 1 H), 0.98 (s, 3 H, 18-CH₃); ¹³C NMR δ 220.0, 198.4, 169.8, 120.5, 73.6, 73.2, 52.4, 52.2, 48.3, 41.6, 40.7, 37.7, 35.7, 35.4, 33.3, 31.5, 27.2, 21.7, 21.4, 14.4; IR (KBr) 1736, 1670 cm⁻¹; HRMS m/z (MH⁺) calcd 315.1960, obsd 315.1939.

3-[3,3:17,17-Bis[1,2-ethanediylbis(oxy)]estr-5-en-10-yl]-2propenoic Acid Ethyl Ester (10). To a stirred solution of triethyl phosphonoacetate (99.2 mL, 0.50 mol) in THF (500 mL) cooled to -60 °C was added n-BuLi (200 mL of a 2.5 M solution in hexane, 0.50 mol). Upon warming to -30 °C, a solution of 9 (55.4 g, 0.140 mol) in THF (500 mL) was added. The reaction was warmed to reflux, 300 mL of solvent was removed by distillation, and the remaining solution was heated at reflux for 24 h. The reaction was cooled, poured into H_2O (750 mL), and extracted with EtOAc (750 mL and 2×250 mL). The combined organics were washed with H₂O (50 mL), dried, and concentrated. Chromatography (50% EtOAc/hexane) gave 10 (57.0 g, 89%) as a white solid: ¹H NMR δ 6.93 and 5.78 (2d, 2 H, J = 15.9 Hz, CH=CHCO₂Me), 5.68-5.62 (m, 1 H, vinyl), 4.27-4.16 (m, 2 H, OCH_2), 4.02–3.79 (m, 8 H, 2 OCH_2CH_2O), 1.31 (t, J = 7.2 Hz, CH_2), 0.72 (s, 3 H, 18-CH₃); IR (KBr) 1718 cm⁻¹; MS (DCI/CH₄) m/z(rel intensity) 459 (MH⁺, 100), 413 (20), 397 (14), 99 (14). Anal. Calcd for $C_{27}H_{38}O_6$: C, 70.72; H, 8.35. Found: C, 70.46;

H. 8.72

10-(3-Hydroxypropyl)estr-5-ene-3,17-dione Cyclic Bis-(1,2-ethanediyl acetal) (11). To liquid NH₃ (200 mL) was added a solution of 10 (10.1 g, 22.0 mmol) in absolute EtOH (60 mL) and Et₂O (40 mL). Lithium metal (3.5 g, 0.50 mol) was added in portions over 1 h. The NH₃ was then removed, and the residue was treated with H_2O (60 mL) and extracted with Et_2O (3 × 75 mL). The combined organics were washed with H₂O, dried, and concentrated. Chromatography (50% EtOAc/hexane) gave 11

⁽¹⁹⁾ The name originally assigned to 4a by Chemical Abstracts was [3R-(3a,6aa,6ba,8aβ,11aa,11bβ)]-3,4,6b,7,8,8a,10,11,11a,11b,12,13dodecahydro-8a-methyl-6H-3,6a-methanocyclopenta[5,6]naphth[1,2-c]-oxacin-2,9-dione. This name appears for 4a in the following patent: Peet, N. P.; Johnston, J. O.; Burkhart, J. P. U.S. Patent 5,099,037, Mar 24, 1992

(5.8 g, 63%) as a white foam: ¹H NMR δ 5.57–5.51 (m, 1 H, vinyl), 4.03–3.82 (m, 8 H, 2CH₂CH₂O), 3.64–3.53 (m, 2 H, CH₂O), 0.90 (s, 3 H, 18-CH₃); ¹³C NMR δ 137.4, 124.1, 119.5, 109.5, 65.1, 64.5, 64.3, 64.1, 63.8, 51.5, 50.6, 45.9, 41.8, 39.3, 36.7, 34.0, 33.6, 31.0, 30.7, 30.2, 29.8, 27.2, 22.3, 21.1, 14.7; HRMS m/z (MH⁺) calcd 419.2797, obsd 419.2775.

10-[3-[[(4-Methylphenyl)sulfonyl]oxy]propyl]estr-4-ene-3,17-dione (13). To a stirred solution of 11 (1.5 g, 35.8 mmol) in CHCl₃ (369 mL, EtOH free) cooled to 0 °C was added pyridine (8.7 mL, 107.6 mmol) followed by TsCl (13.7 g, 71.9 mmol) in portions. After 72 h at 0 °C, the reaction was washed with 0.5 N HCl (200 mL) and H₂O (200 mL) followed by saturated aqueous NaHCO₃ (200 mL), dried, and concentrated. The resultant crude 12^{20} was dissolved in acetone (300 mL), and TsOH·H₂O (1.2 g, 6.3 mmol) was added. After 20 h, the reaction was concentrated and the residue was partitioned between EtOAc (400 mL) and H_2O (150 mL). The organics were washed with H_2O (100 mL), dried, and concentrated. Chromatography (15% EtOAc/CHCl₃) gave 13 (12.6 g, 73% from alcohol 11) as a white foam: ¹H NMR δ 7.79 and 7.35 (pr d, 4 H, J = 8.1 Hz, aryl), 5.87 (s, 1 H, vinyl), 4.03 (t, 2 H, J = 5.5 Hz, CH₂O), 2.46 (s, 3 H, aryl-CH₃), 0.92 (s, 3 H, 18-CH₃); IR (KBr) 1738, 1670 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 485 (MH+, 100), 331 (17), 313 (17).

Anal. Calcd for $\rm C_{28}H_{36}O_{6}S:\ C,\,69.39;\,H,\,7.49.$ Found: C, 69.05; H, 7.83.

 $(4\alpha,10\alpha)$ -4,19-Cyclo-A -dihomoandrost-4b-ene-4a,17-dione (14). To a stirred solution of LHMDS (1.50 mL of a 1.0 M solution in THF, 1.50 mmol) in additional THF (15 mL) cooled to -78 °C was added a precooled (-78 °C) solution of 13 (242 mg, 0.50 mmol) in THF (10 mL), dropwise. After 40 min, the reaction was allowed to warm slowly to rt. After 1 h at rt, the reaction was poured into 0.5 N HCl (60 mL) and extracted with CH₂Cl₂ (60 mL and 30 mL). The combined organics were washed with 0.5 N HCl (60 mL) and saturated aqueous NaHCO₃ (60 mL) followed by brine (50 mL). Chromatography (45% EtOAc/hexane) gave 14 (96 mg, 62%) as a white solid: mp 180-183 °C; ¹H NMR δ 6.02 (s, 1 H, vinyl), 0.91 (s, 3 H, 18-CH₃); ¹³C NMR δ 220.4, 202.6, 167.1, 128.1, 52.1, 51.1, 47.4, 43.1, 40.3, 38.8, 35.7, 34.6, 32.2, 31.4, 29.9, 27.3, 25.3, 21.7, 20.1, 18.8, 13.6; IR (KBr) 1740, 1658 cm⁻¹; MS (DCI/CH₄) m/z (rel intensity) 313 (MH⁺, 100), 295 (18).

(rel intensity) 313 (MH⁺, 100), 295 (18). Anal. Calcd for $C_{21}H_{28}O_2$: C, 80.73; H, 9.03. Found: C, 80.63; H, 9.33.

Acknowledgment. We thank Dr. John C. Huffman of Indiana University for crystallographic studies on 14. Complete crystallographic details are available in microfiche form from the Chemistry Library, Indiana University, Bloomington, Indiana, 47405. Request MSC Report No. 91709.

Supplementary Material Available: NMR spectra and X-ray data for 14 (43 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Medium-Sized Cyclophanes. 21.¹ Preparation and Reduction of syn- and anti-[3.2]Metacyclophanequinone and anti-[4.2]Metacyclophanequinone

Takehiko Yamato,*.† Jun-ichi Matsumoto,† Masami Kajihara,† Kiwamu Tokuhisa,† Kazuaki Suehiro,† and Masashi Tashiro‡

Department of Industrial Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi, Saga 840, Japan, and Research Institute of Advanced Material Study, Kyushu University, 6-1, Kasuga-kohen, Kasuga-shi, Fukuoka 816, Japan

Received February 7, 1992

The title compounds, anti- and syn-[3.2]metacyclophanequinone (12a) and (12b), were prepared by oxidation of the corresponding anti- and syn-9,17-dihydroxy-6,14-di-tert-butyl[3.2]metacyclophanes (10a) and (10b) with Tl(OCOCF₃)₃ in CF₃COOH. When anti-[3.2]quinonophane (12a) was reduced with Zn powder in acetic acid, the corresponding tetrahydroxy derivative 14a was obtained, which was converted to the quinhydrone 13a by treatment with an equimolar amount of quinonophane 12a in refluxing THF. The electronic spectrum of 13a shows a band due to a charge-transfer complex at 400 nm (log ϵ 2.45). In contrast, attempted reduction of syn-quinonophane (12b) with Zn powder in acetic acid yielded only a complex mixture of products. It was also found that syn-quinonophane was easily converted to the corresponding [2 + 2] cycloadducts 16 and 17 by irradiation with sunlight or tungsten lamp. When oxidation of anti- and syn-10,18-dihydroxy-7,15-di-tert-butyl[4.2]metacyclophanes (11a) and (11b) with Tl(OCOCF₃)₃ in CF₃COOH was carried out under the same conditions as [3.2]metacyclophanes, both compounds gave anti-metacyclophanequinone (18a). This finding suggests that the ring inversion to the thermodynamically more stable anti conformation is possible in the [4.2]metacyclophanequinone. While anti-[4.2]metacyclophanequinone (18a) was reduced with Zn powder in acetic acid, the color change of reaction mixture from pale yellow to reddish brown was observed due to the formation of the corresponding quinhydrone 19. However, the attempted isolation of the quinhydrone 19 was unsuccessful. Rather, the fully reduced tetrahydroxy derivative 20 was obtained in 91% yield.

Introduction

The first charge-transfer bridged aromatic compound, [2.2]paracyclophanequinone (1) was prepared from [2.2]-

[†]Saga University.

[‡]Kyushu University.

paracyclophane by $Cram^2$ in 1966. Subsequently, the chemistry of the charge-transfer cyclophanes has been extensively studied.³⁻⁸ Staab and Rebafka^{5,9} reported that

⁽²⁰⁾ Compound 12 was initially purified by chromatography (35% EtOAc/hexane) but was used crude in subsequent runs to improve the overall yield for the conversion of 11 to 13, and because of the relative instability of 12. For 12: ¹H NMR (300 MHz, $CDCl_3) \delta$ 7.80 and 7.36 (pr d, 4 H, aryl), 5.53-5.49 (m, 1 H, vinyl), 4.03-3.81 (m, 10 H, $2OCH_2CH_2O$ and CH_2O), 2.46 (s, 3 H, aryl-CH₃), 0.83 (s, 3 H, 18-CH₃); MS (DCI/CH₄) m/z (rel intensity) 574 (22), 573 (MH⁺, 60), 419 (21), 402 (26), 401 (100), 400 (16), 399 (28), 357 (21), 339 (21), 217 (23), 173 (43), 93 (17). Anal. Calcd for $C_{32}H_{44}O_7S$: C, 67.11; H, 7.74. Found: C, 67.19; H, 7.96.

Medium-Sized Cyclophanes. Part 20. Yamato, T.; Matsumoto, J.;
 Kajihara, M.; Tokuhisa, K.; Suehiro, K.; Tashiro, M. Chem. Ber., in press.
 (2) Cram, D. J.; Day, A. C. J. Org. Chem. 1966, 31, 1227.